
fD-AI66 995 PARALLEL MATRIX CONPUTRTIONS(U) MARYLAND UNIV COLLEGE 1/1
I PRK DEPT OF COMPUTER SCIENCE G W STEWART ET AL.

UNCLSSIIED28 MAR 85 AFOSR-TR-86-0848 AFOSR-82-8978 /92NCASFED EEEEEEE ME

sEo.

W.

1.1 U4O&

MICROCOPY RESOLUTl" "53 CW

NAMINAL SOUiAU O~SIASO AI 4(V ~

UNCLASSIFIED
"11 URITY CLASSIFICATION OF THIS PAGEIt) ' REPORT DOCUMENTATION PAGE

0) REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

NCLASSIFIED
SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

o IApproved for public release; distribution
W . DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMSER(S)

AFOSR.T. 86-0048
O NAME OF PERFORMING ORGANIZATION I. OPPFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Maryland Air Force Office of Scientific Research
ADDRESS (City. State and ZIP Codes 7b. ADDRESS (City. Stob and ZIP Code)

Directorate of Mathematical & information
College Park, Maryland 20742 Sciences, Bolling AFB DC 20332-6448

So. NAME OF FUNDINGISPONSORING S OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (Iapplicablei

AFOSR NM AFOSR-82-0078
B. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
E LE ME NT NO. NO. No. NO.

Bolling AFB DC 20332-6448 61102F 2304
11. TITLE (Include Security Cla lfiatin n

PARALLEL MATRIX COMPUTATIONS
12. PERSONAL AUTHOR(S)

G.CA Stewart. Dianne P. O'Leary
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. DaO) 15. PAGE COUNT

Interim IFROM 19A3I TO 19A4 85-3-28 12
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Continue on niverse if necespag'y and identify by block number)

IELD GROUP SUB. GR.

19. ABSTRACT (Continue on rehverse if acosts end IdentIfy by block number)

This project concerns the design and analysis of algorithms to be run in a

processor-rich environment. We focus primarily on algorithms that require no
global control and that can be run on systems with only local connections among
processors. We investigate the properties of these algorithms both theoretically
and experimentally. The experimental work is done on the ZMOB, a working parallel
computer operated by the Laboratory for Parallel Computation of the Computer
Science Department at the University of Maryland.

To give our work direction, we have focused on two areas:

1. Dense problems from numerical linear algebra,

2. The iterative and direct solution of sparse linear systems. -1

MJO DISTRIBUTION/AVAILABILITY
OF ABSTRACT

21. ABSTRACT SECURITY CLASSIF ICATION lo

UNCLASSIFISD/UNLIMITEO) SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER |22. OFFICE S
JohnThomas(inlude A ma Code) M

JnThomas (202) 767-5026 NM
11 0111 _ I

DO FORM 1473,83 APR P F I JAb is OBSOiATE. UNCLASSIFIED
SECURITY CLASSIFICATIONI OF THIS PAG

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT cont.

We discuss in this summary the ZI4OB hardware and the research projects that
we have pursued under this grant support.

3 .

UNIASItE

99UICLASSIFID INOFTI PGt

Technical Summary Report

Second Year of Activities

AFOSR 82-0078

Parallel Matrix Computations

Supported by

Air Force Office of Scientific Research

Numerical Mathematics

Boiling Air Force Base, D.C. 20332

Research conducted at

Department of Computer Science

University of Maryland

College Park, MD 20742

(301) 454-2001

Principal Investigators

Professor G. W. Stewart (410-68-8197)

Assoc. Prof. Dianne P. O'Leary (359-46-2895)

Approved for PUble releag
dlstr butjon t=jltd,

;

1. INTRODUCTION

4 This project concerns the design and analysis of algorithms to be run in a

processor-rich environment. We focus primarily on algorithms that require no global

control and that can be run on systems with only local connections among processors.

We investigate the properties of these algorithms both theoretically and experimentally.

The experimental work is done on the ZMOB, a working parallel computer operated by

the Laboratory for Parallel Computation of the Computer Science Department at the

University of Maryland.

To give our work direction, we have focused on two areas:

1. Dense problems from numerical linear algebra; 7

2. The iterative and direct solution of sparse linear systems.

We discuss in this summary the ZMOB hardware and the research projects that we have

pursued under this grant support.

2. The ZMOB Computer

This is a configuration of Z80 processors, which are connected by a slotted ring.

Here we summarize the parts that are important to our project.

1. The basic unit is a Z80 processor board, called a moblet, with 64K bytes

of RAM, 2K bytes of ROM, an Intel 8232 floating point processor, a

serial port, and, in some cases, a parallel port.

2. Although moblets are connected by a ring, the ring moves so fast that

any two processors can communicate as quickly as they can move infor-

mation on and off the ring. Moreover, the ring has an output-bearing

slot for each moblet, which means that two moblets can communicate

without blocking the communication of any other moblets. Thus, the

ZMOB looks like a completely connected network of processors.

3. Messages can be sent under a number of protocols, which include a

broadcast mode, a pattern matching mode, and sending to a specific

moblet.

4. The ZMOB has a control moblet which can broadcast nonmaskable con-

trol Interrupts. AIR FRM 0171Cl1 F Th1! C X3ANM (A1 l)

NOTI CE Or Twan&D2?i Tome11
This tPqhftL@'11 roport bone bess Voiw~ tw d If
_pprovei rorsi to ralass lAW AYR 10 ..h

Distrib%lofl 10 U33LL1itO*
Csi . a1 i

AFOSR-82-0078, Second Year 2

5. A small ROM monitor supports communication activities such as load-

ing the processors.

We have worked on a ZMOB consisting of 32 processors. This configuration will be

extended to at least 128 processors, and perhaps 256. An advantage of the ZMOB archi-

tecture is that small ZMOBs can be split off for debugging purposes.

It is important to be precise about how we use the ZMOB in our research. What

we do not do is to investigate algorithms for the ZMOB itself. Instead we use the fact

that the ZMOB appears to be a completely connected network to simulate various

locally connected networks of processors. Thus we can investigate, In a realistic setting,

the effects on our algorithms of various processor interconnections.

3. Summary of Work

Our activities may be conveniently divided into four categories: algorithms,

software development, theoretical analysis, and experimental analysis. Since experiments

on the ZMOB have been preliminary in nature, we discuss only the first three in detail.

* For details on our past work, consult the annotated list of references in Appendix A.

3.1 Algorithms

We have based most of our work In this area on the notion of a data-flow algo-
rithzm. The computations in a data-flow algorithm are done by independent computa-

tional nodes, which cycle between requesting data from certain nodes, computing, and

sending data to certain other nodes. More precisely, the nodes lie at the vertices of a

* directed graph whc,.e arcs represent lines of communication. Each time a node sends

data to another node, the data Is placed In a queue on the arc between the two nodes.

When a node has requested data from other nodes, it is blocked from further execution

until the data it has requested arrives at the appropriate input queues. An algorithm 3 '

organized in this manner Is called a data-fow algorithm because the times at which

nodes can compute is controlled by the flow of data between nodes.

Data-flow algorithms are well suited for Implementation on Multiple-
Instruction /MulItiple-Data networks of processors. Each node In a computational net- C)
work is regarded as a process residing on a fixed member of a network of processors. We Q3
allow more than one node on a processor. Since many nodes will be performing essen-....

tially the same functions, we allow nodes which share a processor also to share pieces of

reentrant code, which we call node programs. Each processor has a resident operating

system to receive and transmit messages from other processors and to awaken nodes de

V.h

AFOSR-82-0078, Second Year 3

when their data has arrived. We will discuss this operating system in greater detail
later.

Data,-flow algorithms have a number of advantages.

1. The approach eliminates the need for global synchronization.

2. Parallel matrix algorithms, including all algorithms for systolic arrays,

have data-flow implementations.

3. Data-flow algorithms can be coded in a high-level sequential program-
ming language, augmented by two communication primitives for sending

and receiving data.

4. Data-flow computations can be supported by a very simple operating
system.

5. The approach allows the graceful handling of missized problems, since
several nodes can be mapped onto one processor.

6. By mapping all nodes in a data-flow algorithm onto a single processor,
one can debug parallel algorithms on an ordinary sequential processor.

The chief difficulty with the data-flow approach is that the behavior of the algo-
rithms cannot be analyzed purely from the local viewpoint of the node programs. This is
one reason for supplementing theory with experiment.

In addition to delineating a general approach to parallel matrix computations, we
have devised a number of new parallel algorithms. For dense matrices we have
developed parallel algorithms for the computation of the singular value decomposition,
for the computation of the Schur decomposition, for the computation of congruence
transformations, and for the solution of Liapunov equations. We have developed itera-

tive algorithms for the solution of large sparse systems and for the solution of nearly
uncoupled Markov chains.

3.2 Software Development

A major part of our efforts has been devoted to building an operating system to
implement data-flow algorithms. The system consists of three parts: the node communi-

cation and control system (NCC), the front end, and the snapshotter.

NCC is the heart of our system. A copy of It resides on each processor. It is
responsible for matching Incoming messages with data requests from nodes on the pro-
cessor. Whenever a node's requests are satisfied, NCC can awaken the node, permitting

-- N

AFOSR-82-0078, Second Year 4

it to compute.

The front end is a loader that assigns nodes to processors and loads the appropriate

node programs and data. The front end also constructs address tables that are used by
NCC for interprocessor communication.

The snapshotter is our main measurement tool for evaluating algorithms and
scheduling strategies. It is triggered by the control interrupt, which causes all computa-
tions to cease and control to be transfered to the snapshotter. The snapshotter then

reports the status of the computation to the control processor. By repeatedly invoking

the snapshotter, we can get an execution profile of our algorithms. It is an example of
the flexibility of the data-flow approach that the snapshotter itself is implemented as a

set of computational nodes and uses NCC to communicate with the control processor.

Since the system is adaptable to any Multiple-Instruction/Multiple-Data network of

processors, we have taken care to code it so that the machine dependent parts are iso-

lated in functionally defined segments of code. Thus we hope that the system will prove
useful to others doing research In parallel computation, and, in fact, other research

groups have expressed interest in using it. Complete documentation on the system is in

preparation.

3.3 Theoretical Analysis

The analysis of parallel numerical algorithms has to be understood in two senses.
In the first place there are the conventional analyses that must be done on any numeri-

cal algorithm; rounding error analyses, proofs of convergence, and determination of rates

of convergence are typical examples. In the course of developing algorithms we have

done a number of these. Beyond these analyses there is the problem of determining how
Nvell a parallel implementation works. This is analogous to the computation of opera-

tions counts and other performance measurements for sequential algorithms. The main

part of our theoretical work has been devoted to the study of this problem. We have

considered three issues: determinacy, assignment, and scheduling.

The determinacy issue arises from the fact that in the specification of a data-flow

algorithm, there may be no unique order of execution for the nodes. Thus it was neces-

sary to show that whatever the order, tie computation produces essentially the same

results.

The issues of assignment and scheduling are closely related. When a computational
network is to be mapped onto a smaller network of processors, It may happen that there

are several ways of assigning the nodes to processors. The question then arises of which
way is best. Once several nodes are executing on a processor, an operating system such

•N ad, &,

AFOSR-82-0078, Second Year 5

as NCC must schedule the nodes which are ready for execution according to some fixed
strategy. Again the question arises of which scheduling strategy is best. The assignment

and scheduling issues are related because an optimal scheduling strategy for one assign-

ment may not be optimal for another.

We have investigated these issues for a class of algorithms for matrix factorization,
including implementations of the Cholesky algorithm, the LU decomposition, and the
QR decomposition. We have identified several good assignment and scheduling stra-
tegies for problems in which the number of matrix elements exceeds the number of pro-
cessors, and have computed upper and lower bounds on the execution times. This per-
mits choice of a good algorithm for a particular machine, once the ratio of computation
time to communication time is known.

4. Summary

Our work has resulted in a collection of parallel algorithms for matrix computa-
tions, a data-flow operating system to support experiments, and theoretical investigation
into complexity and determinacy issues in parallel matrix computations.

bm

- .

Appendix A
Accomplishments under Grant AFOSR 82-0078

I. Technical Reports

(1) G. W. Stewart, Computing the CS Decomposition of a Partitioned Orthonormal

Matrix, TR-1159, May, 1082.

This paper describes an algorithm for simultaneously diagonalizing by orthogonal

transformation the blocks of a partitioned matrix having orthonormal columns.

(2) G. W. Stewart A Note on Complex Division, TR-1206, August, 1982.

An algorithm (Smith, 1962) for computing the quotient of two complex numbers is

modified to make it more robust in the presence of underfiows.

(3) D. P. O'Leary, Solving Sparse Matrix Problems on Parallel Computers, TR-1234,

December, 1982.

This paper has a dual character. The first part is a survey of some issues and ideas

for sparse matrix computation on parallel processing machines. In the second part,

some new results are presented concerning efficient parallel iterative algorithms for

solving mesh problems which arise in network problems, image processing, and

discretization of partial differential equations.

(4) G. W. Stewart, A Jacobi-like Algorithm for Computing the Schur Decomposition of

a Non-Hermitian Matrix, TR-1321, August, 1983.

This paper describes an iterative method for reducing a general matrix to upper tri-

angular form by unitary similarity transformations. The method is similar to

Jacobi's method for the symmetric eigenvalue problem in that it uses plane rota-

tions to annihilate off-diagonal elements, and when the matrix is Hermitian it

reduces to a variant of Jacobi's method. Although the method cannot compete

with the QR algorithm In serial implementation, it admits of a parallel

implementation in which a double sweep of the matrix can be done in time propor-

tional to the order of the matrix.

(5) Dianne P. O'Leary and Robert E. White, Multi-Splittings of Matrices and Parallel

Solution of Linear Systems, TR-1362, December, 1983.

We present two classes of matrix splittings and give applications to the parallel

iterative solution of systems of linear equations. These splittings generalize regular

splittings and P-regular splittings, resulting in algorithms which can be imple-

mented efficiently on parallel computing systems. Convergence is established, rate

of convergence is discussed, and numerical examples are given.

(6) D. P. O'Leary and G. W. Stewart, Data-Flow Algorithms for Matrix Computations,

TR-1366, January, 1984.

In this work we develop some algorithms and tools for solving matrix problems on

parallel processing computers. Operations are synchronized through data-flow

I* alone, which makes global synchronization unnecessary and enables the algorithms

to be implemented on machines with very simple operating systems and communi-

cations protocols. As examples, we present algorithms that form the main modules

for solvine Liaponuv matrix equations. We compare this approach to wavefront

array processors and systolic arrays, and note its advantages in handling missized

problems, in evaluating variations of algorithms or architectures, in moving algo-

rithms from system to system, and in debugging parallel algorithms on sequential

machines.

, (7) G. W. Stewart, W. F. Stewart, D. F. McAlister, A Two Stage Iteration for Solving

Nearly Uncoupled Markov Chains, TR-1384, 1984.

This paper presents and analyses a parallizable algorithm for solving Markov chains

that arise in queuing models of loosely coupled systems.

(8) David C. Fisher, In Three-Dimensional Space, the Time Required to Add N

Numbers is 0 (NI/4), TR-1431, August, 1984.

How quickly can the sum of N numbers be computed with sufficiently many proces-

sors? The traditional answer is t = 0 (log N). However, if the processors are in

R d (usually d < 3), addition time and processor volume are bounded away from
zero, and transmission speed and processor length are bounded, t > 0 (N1d +1).

()D. P. O'Leary, G. W. Stewart, On the Determinacy of a Model for Parallel Compu-

tation, TR-1456, November, 1084.

In-this note we extend a model of Karp and Miller for parallel computation, allow-

ing the amounts of input and output for each process to depend upon the history.
We show that the model is deterministic, in the sense that under different schedul-

ing regimes each process in the computation consumes the same input and gen-

erates the same output. Moreover, if the computation halts, the final state is

independent of scheduling.

HI. Technical reports in preparation

(1) D. P. O'Leary, G. W. Stewart, On the Mapping Problem for Parallel Implementation

of Matrix Factorizations.

We consider in this paper the problem of factoring a dense n Xn matrix using a

p Xp grid of MI~vID processors when p <n .The specific example analyzed is
the computational network that arises in factoring a matrix using the LU, QR, or

Cholesky algorithms. We prove that if the elements of the matrix are evenly distri-

buted among processors, and if computations are scheduled by round-robin order-

Ing of matrix elements or by order of message request, then optimal order speed-up

is achieved. Such speed-up is not necessarily achieved, however, if the computp~tion

for a given matrix element is split across processors, or if different scheduling algo-

rithms are employed. We exhibit an way to evenly distribute the factorization
work among n processors which results in only a constant speed-up rather than

an order of magnitude, and we give an example of a poor scheduling algorithm.

Lower bounds on execution time for the algorithm are established for distributing

the matrix by square blocks, by columns, and by torus wrap.

(2) R. van de Geijn, D. P. O'Leary, G. W. Stewart, A Node Communication System for

Data-Flow Computation.

This report provides documentation and program listings for an operating system

for implementation of dataflow algorithms. Programs are included for loading

data onto a set of processors, handling communication between nodes in the com-

putation, scheduling the nodes residing on a single processor, reporting the status of

the computation at any given time, and postprocessing the results. The machine-

dependent parts of the code are isolated. Documentation is given for both instal-

ling the system and for using it. An example program, implementing the Cholesky

decompostion of a matrix, is provided.

1III. Presentations during 1983-84

(1) D. P. O'Leary, Solving Mesh Problems on Parallel Computers,

Bell Laboratory, Murray Hill, N.J., January, 1983

IBM T. J. Watson Laboratory, Yorktown Heights, N.Y., January, 1983.

(2) G. W. Stewart, A Jacobi-like Algorithm for Computing the Schur Decomposition of

a Non-Hermitian Matrix (invited), Symposium on Numerical Analysis and Compu-

tational Complex Analysis, Zurich, Switzerland, August, 1083. Also presented at

North Carolina State University, September, 1983, and at University of Houston,

November, 1983,

(3) G. W. Stewart, The Structure of Nearly Uncoupled Markov Chains (invited), Inter-

national Workshop on Systems Modeling, Pisa, Italy, September, 1983.

(4) G. W. Stewart, Data Flow Algorithms for Parallel Matrix Computations (invited),

SIAM Conference on Parallel Processing for Scientific Computing, Norfolk, VA.

November, 1983.

(5) D. P. O'Leary, Parallel Computations for Sparse Linear Systems (minisymposium

Invitation), SIAM 1983 Fall Meeting, Norfolk, VA, November, 1983.

(6) D. C. Fisher, Numerical Computations on Multiprocessors with Only Local Com-

munications (poster session), SIAM Conference on Parallel Processing for Scientific

Computing, Norfolk, VA, November, 1983.

(7) G. W. Stewart, Parallel Computations on the ZMOB, Annual meeting of CER parti-

cipants, University of Utah, March, 1084.

(8) D. P. O'Leary, Data-flow Algorithms for Matrix Computations (minisymposium invi-

tation), ACM SIGNUM Conference on Numerical Computations and Mathematical

Software for Microcomputers, Boulder, Colorado, March, 1984.

(9) D. P. O'Leary, Solution of Matrix Problems on Parallel Computers (invited presen-

tation), Gatlinburg IX Meeting on Numerical Linear Algebra, Waterloo, Ontario,

Canada, July, 1984. Also presented at Oak Ridge National Laboratory, September,

1984; National Bureau of Standards, Boulder, Colorado, March, 1984; and Yale

University, November, 1984.

(10) G. W. Stewart, The Data-Flow Approach to Matrix Computations, Los Alamos

Scientific Laboratory, October, 1984.

(11) G. W. Stewart, The Impact of Computer Architecture on Statistical Computing,
(invited) SIAM/ISA/ASA Conference on Frontiers of Statistical Computing,

October, 1984.

IV. Publications

(1) G. W. Stewart, 'Computing the CS Decomposition of a Partitioned Orthonormal

Matrix," Numerische Mathematik 40 (1982) 207-306.

(2) D. P. O'Leary, "Ordering schemes for parallel processing of certain mesh prob-

lems," SIAM Journal on Scientific and Statistical Computing 5 (1984) 620-632.

(3) D. P. O'Leary, R. E. White, "Multi-splittings of matrices and parallel solution of

linear systems," SIAM Journal on Algebraic and Discrete Methods, to appear.

(4) D. P. O'Leary, G. W. Stewart, "Data-flow algorithms for parallel matrix computa-

tions," Communications of the ACM, to appear.

(5) G. W. Stewart, "A Jacobi-like Algorithm for Computing the Schur Decomposition

of a Non-Hermitian Matrix," SIAM Journal on Scientific and Statistical Computing,

to appear.

